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Noise-enhanced phase locking in a stochastic bistable system driven by a chaotic signal
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We study the dynamics of an overdamped bistable system driven simultaneously by noise and a chaotic
input signal. The effect of synchronization of switchings in a stochastic bistable system by a subthreshold
chaotic signal is found and described in terms of the theory of phase synchronization. Using the two different
definitions of the instantaneous phase of stochastic and chaotic oscillations, we show explicitly the effect of
noise-enhanced phase locking both for coherent and for broadband chaotic input signals. The quantitative
analysis of this effect has shown that the degree of phase coherence estimated by means of the effective
diffusion constant is maximal in some range of noise intensities. Moreover, there is a synchronization region
on the parameter plane “amplitude of chaotic signal—noise intensity” in which the phases and mean frequen-
cies of an input signal and of response are lock&4.063-651X%99)09301-0

PACS numbdps): 05.45-a, 05.40-a

I. INTRODUCTION —A¢—ecosg. In the case oA <e and of small noise inten-
sity, this motion can be divided into two parts: the phase
Synchronization is a basic phenomenon in physics and thdifference fluctuates for a long time inside a well of the
classical example of self-organization in nonlinear oscilla-potentialU(¢) (the phase lockingand rarely makes jumps
tory systems. To synchronize means to concur or agree iffom one potential well to anothér.e., displays phase slips
time, to proceed or to operate at exactly the same rate, to As is well known, the effect of noise on the synchronized
happen at the same tinfi¢]. The phenomenon of synchroni- self-sustained oscillator is negative: the increase of noise in-
zation occurs in nonlinear self-sustained oscillators driven bYensity leads to the loss of phase coherefpt®se slips be-
external periodic force or coupled with each oth2/3]. In  come more frequentand shrinks Arnold tongud®]. How-
general, synchronization can be treated as the appearanceefer, there are qualitatively different situations when the
some functionals characterizing the correlations in temporahoise plays a constructive ro[@0]. One of the typical ex-
behavior of two or more processgs]. The instantaneous amples of the positive effect of noise is stochastic resonance
phase plays the role of such a functional in the classicajSR) [11-14, which occurs in a wide class of nonlinear
theory of oscillations. Synchronization is defined in this caseystems driven simultaneously by noise and a signal. To
as the locking of phases of the self-sustained oscilld{t)  demonstrate SR, a nonlinear system should possess a noise-
and of external periodic forceW(t)=Qot: [nd®(t)  controlled time scale. Traditionally, SR is described in terms
—mW¥(t)|<const, or by a weaker condition of frequency of the spectral power amplificatidii5] and signal-to-noise
locking Q=Pp= (m/n) Qy; here n,m are some integers. ratio[16]. The dependencies of these characteristics versus
The above conditions are fulfilled in finite regions of the noise intensity have a bell-shaped maximum that allows us to
parameter space of the system which are called Arnol@letermine SR as amplification of a weak signal applied to the
tongues. Recently, the classical approach to synchronizatiofput of the system by tuning the noise level.
based on the notion of an instantaneous phase of oscillations Another approach to the description of SR is based on the
was generalized in the cases of nonautonomous and interagtatistics of residence tim¢s7,18. The residence times dis-
ing chaotic systemEs,6]. tribution has an exponential shape in the absence of an input
Synchronization of self-sustained oscillators in the pressignal. In the presence of a weak signal this distribution is
ence of noise was considered for the first tim¢7hand was ~ Structurized and contains a series of peaks centered at odd
then studied in detail by StratonovidB]. As was shown, multiples of the half-period of the signgl2]. As was shown
Gaussian noise leads to fluctuations of the phase differendg recent work{19], to get the correct results it is necessary
H(t)=d(t)—¥(t) and, in the assumption of constant am-to analyze the difference between the residence-time distri-

plitude, its slow dynamics can be described by the followingbution in the presence of modulation and the residence-time

stochastic differential equatioisSDE): distribution in the absence of modulation. The deviation
from undriven residence-time distribution at the time of the
=AM~ €G(¢)+ (1), (1)  half-period of the external signal can be used as the measure
for SR.

whereA =0 — Q4 ande are the frequency mismatch and the It is important to underline that, usually, an amplitude of
parameter of nonlinearity, respectivel$(¢) is a 2 peri-  periodic force takes much less than a barrier separating the
odic function, and(t) is Gaussian noisgg]. In the case of a potential wells and SR can be correctly described by linear-
Van der Pol oscillator driven by an external periodic force,response theory20-23. In this case the response of the
G(¢)=sing and the phase difference performs overdampedtochastic resonator is fully determined by the linear suscep-
Brownian motion in the tilted periodic potentidd ()= tibility of the system and the structure of the input signal is
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immaterial: the signal can be harmonic, quasiperid@i], 40 . .
or even aperiodic broadband noi2,24). As was shown in

[25], noise can enhance the response of a nonlinear systemi 5
a weak input signal, regardless of whether the signal is peri-

odic or aperiodic. The cross-correlation functions and

—_

transinformation that directly quantifies the rate of informa- g
tion transfer through a stochastic system were used to quar
titatively characterize this phenomenon, which was calledx —2¢
aperiodic stochastic resonan@SR). ASR in excitable sys-
tems driven by a chaotic input signal was considerd@é. -40
It was shown that the information transfer between the two
relaxation-type nonlinear oscillators is optimized by interme-
diate noise levels.

It is well known that in some cases the degree of coher-
ence betwee_n switchings in a_sftochastlc bistable system an =80 001 002 003 0,04
an external signal may be sufficiently lardel]. It allows us o
to speak about synchronization features of SR, which be-
came the subject of a lot of theoretical and experimental FIG. 1. The power spectrum of oscillations in thésRier sys-
investigations[12,22. These features manifest themselvestem forc=7.1. The largest Lyapunov exponent\is-0.066 58.
more brightly in situations when the amplitude of the peri-
odic force is large enough, although it is insufficient to causeéial concept and demonstrate the noise-enhanced phase lock-
the switchings in the absence of noise. As was show@7h  ing for the input signal from the Rsler system. Section IlI
the effect of mean switching frequency locking in a Schmittis devoted to the study of synchronization of a switching
trigger driven Simu|taneous|y by noise and periodic Signa|proceSS in a stochastic bistable SyStem by the broadband cha-
takes place. Moreover, as follows from the resultq 28], otic signal from the Lorenz system. Our conclusions are
synchronization of the switching processes can also be otgiven in Sec. IV.
served in the case of the absence of deterministic time scales
when the interaction of statistical time scales of subsystems Il. NOISE-ENHANCED INSTANTANEOUS
takes place. As follows from these results that SR systems PHASE LOCKING
can demonstrate synchronizationlike phenomena which are
similar to the classical synchronization mentioned above.

The classical notion of synchronization and mentione
synchronizationlike effects occurring in periodically driven
stochastic bistable systerf&7] were discussed if29]. It has .
been shown that for a sufficiently large amplitude of periodic x=ax—Bx*+ 2D E(t) +ku(t), )
force the noise-enhanced phase locking takes place and SR
in this case, can be correctly described in terms of the clasy
sical theory of oscillations. However, {i29] the case of a constant, andu(t) is the signal from a chaotic system. .
periodic input signal was considered only, whereas the real; First, let us consider the case of the chaotic input signal
world signals are often not periodic and contain both phasgom the Rsler system, which is described by the following
and amplitude fluctuations. ordinary differential equat|0n9{1— 7(Xo+X3), x2— (X1

The main goal of the present study is to take the next steg-0.15,), x3— 0.2+ x3(X,—c¢)], where r=0.01 is the
in the study of synchronization in stochastic bistable systemsmall parameter which was introduced in the model to re-
and to generalize the approach proposef2# to the more duce the characteristic time scale and 6.1. It is known
complex and interesting case of chaotic input signals. Sucthat the Rasler system for chosen values of the parameters
signals can be considered as a simple model of real signaldemonstrates the regime of so-called weak chaos which is
which in spite of their deterministic nature, contain both am-characterized by the presence of a sharp single peak in the
plitude and phase fluctuations. The previous study of thgower spectrum of oscillationsee Fig. 1L That gives the
passing of nonperiodic signals through the stochastic bistableossibility to consider the oscillations in the §&ter system
system dealt with a consideration of the influence of the amas close to periodic with slowly varying amplitude and phase
plitude and phase fluctuations on the SR characterifdivs  (we can introduce into consideration the quasiperiod of cha-
plification and signal-to-noise rafi$30,31. However, these otic oscillationsT which equals to the mean return time in
results do not provide any information about instantaneouthe secant plang,=0). This fact and also the presence of
matching of input signals and of output switching events. Inthe direction in the phase space of a chaotic system which
other words, we want to find the answers to the followingcorresponds to the zero Lyapunov exponent give the possi-
guestions: Is it possible to observe synchronization betweehility to introduce the phase of chaotic oscillations and to
a chaotic input signal and a response in the classical sense déscribe the external and mutual chaotic synchronization in
the coincidence of their instantaneous phases? If yes, théerms of the classical theory of phase synchronizaf®in
how long will they remain synchronized? To answer theseAccording to[5,6], the instantaneous phase of chaotic oscil-
guestions, we introduce in Sec. |l the instantaneous phase &itions can be introduced in three ways: through the return
stochastic and chaotic oscillations based on the analytic sigimes in some secant plane, through a phase space projection,

We treat as a model an overdamped stochastic bistable
$System driven by the slowly varying chaotic signal, which is
described by the following SDE:

where £(t) is white Gaussian noisey,3>0, k is a some
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and through the analytic signal concept. According to the 70 . . . . .
approach proposed i29], we will define the instantaneous 60 .
phases of both the input signal from theRker system and 50 ]
the response of the stochastic bistable system by means ¢ ]
the analytic signal concept, based on the Hilbert transforma: 20 1
tion (HT). The analytic signalv(t) is a complex function of
time defined as 20 1
=~ 10 :
w(t)=x(t) +iy(t)=A(t)e'*", @ F ]
wherey(t) is the HT of original process(t): _;Z 1
= 1(= x(r)d 4 -30 .
y=—| —;dr 4 0 ]
-50 i
In the last expression the integral is taken in the sense of the  _, . . . s s
Cauchy principal value. Instantaneous amplitua{¢) and 0 200 400 600 800 1000 1200
phased(t) of x(t) are unambiguously defined through this T

concept as FIG. 2. The instantaneous phase difference versus (iimanits

of quasiperiod of the chaotic signdbr indicated values of noise
’ az(t)=x2(t)+y2(t). (5) intensity D. Other parameters are=5, =1, c=7.1, k=0.35,
m(t)=x4(t)—1.02518.

y(t)
®(t):arcta+)((—t)

The mean frequenciw) is then defined as the range of noise intensities in which the mean frequency of
1T stochastic oscillations coincides with the mean frequency of
(w)=lim ff o(t)dt. (6) chaotic oscillations, e.g., thiecking of mean frequency of
0 chaotic oscillationdakes place. The results reported in Figs.
. . , 2 and 3 are very similar to those obtained 28], where the
As was mentioned above, noise shrinks Arnold tongues of 556 of periodic forcing was considered. This fact means that
the self-sustained oscillator and makes obscure the classicglg phase fluctuations contained in the input signal are
definition of synchronization. Evidently, in this case we canpassed through the stochastic resonator without any distor-
speak aboutffective synchronizatioonly [32]. To define  iong at an optimal noise level. Although the above results
the conditions of effective synchronization of a noisy dy-ciearly display the effect of phase synchronization, we need
namical system we must impose some restrictions either o, esfimate the duration of phase locking times to determine
phase (frequency fluctuations or on the output signal-to- {he effective synchronization of a stochastic system.
noise ratio. We will consider the strongest definition based According to the definition of effective synchronization, a

on statistics of phase fluctuations. stochastic bistable system driven by the chaotic signal can be
The instantaneous phase difference between the output

and input signals is
H()=D(t)—W(1), (7

whered(t) is the phase of the stochastic bistable system anc 0020
¥ (t) is the phase of the chaotic signal(t) from the
Raossler system. To determing(t), we have integrated nu-

T—oo

0.025

merically the original SDE2) and then we perform HT us- 0.015 1 |
ing a well-established techniqusee, for exampld33]). The g
results of our calculations are reported in Fig. 2. The effect 0010 L |

of noise-enhanced phase lockiigyclearly seen. The instan-

taneous phases of the output and input signals are locked ¢

an optimal noise level in the stochastic resonator and theit s
difference fluctuates about some constant value. As the nois
intensity deviates from an optimal value, the duration of the

time intervals in the course of which the phases are lockec (gg s ‘

decreases and phase slips appear, so that we can speak ab 00 0z 05 08 10 12 15 18 20
partially synchronized phase dynamics. It is remarkable that D
the dynamics of the phase differen¢gt) as well as in the FIG. 3. The dependence of mean freque(By(solid line) and

case of periodic driving29] is very similar to that of a of mean switching frequencgsymbols versus noise intensity for
synchronized self-sustained oscillator and can be qualitagifferent values of parameters and k: (1) k=0; (2) c=7.1, k
tively described by SDE1). The dependence of mean fre- =0.35; (3) c=8.5, k=0.30. Dashed line is the value of the mean
guency (6) and mean switching frequend®7,29 versus frequency of chaotic oscillations in the &sler system. Other pa-
noise intensity is presented in Fig. 3. As clearly seen, there isameters are the same as in the previous figure.
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FIG. 5. Synchronization region on the parameter plane “noise
intensity-amplitude of chaotic signal.” Other parameters are
=5, B=1,c=6.26, u(t)=x(t).

FIG. 4. The effective diffusion constalit,; vs noise intensity
for indicated values of parameterin the Rasler system. Other
parameters are the same as in Fig. 2.

considered as effectively synchronized if the mean time irfréduency lockingArnold tongues To construct such a re-
the course of which the instantaneous phase of the system $on in our case we define the condition of effective synchro-
locked is much larger than the characteristic time scale of &lzation as

chaotic system. There is no universal and strict definition of

a time scale of a chaotic dynamical system at present. Its 472

definition is a separate task in each concrete case. For the Deﬁgﬁ' ©

input signal from the Rssler system demonstrating the re-

gime of weak chaos, it is reasonable to consider the quasi- _ L .

period of chaotic oscillations as such a time scale. In oufVheren>1is the number of quasiperiodsof chaotic os-
study we will consider the chaotically driven overdampedc'”at'ons' In our study we t09h=100, e.g.,'the s_yster@)
Kramers oscillator(2) to be effectively synchronized if its 2N be considered as effect_lvely synchronized if the instan-
phase appears to be locked in the course of a time that {&neous phases are locked in the course of at least 100 qua-
much larger than the quasiperiod of oscillations in theSIP€riods of the input signal. The region of phase locking is
Rassler system. As seen from Fig. 2, the phase of stochastRoWn in Fig. 5. It possesses a tonguelike shape that makes
oscillations is locked in the course of the hundreds of quasith® @nalogy with the classical synchronization more obvious.
periods of chaotic signal, which means synchronization in' "€ threshold character of synchronization is also clearly
the above defined sense. To estimate a duration of phaS§€"- The calculation of the residence-time distribufibf

locking time intervals we will use theffective diffusion con- Nas shown that in the regime of synchronization it contains a
stant,which is defined by the following relation: single peak at the time that corresponds to half of the quasi-

10 T T

_1 d 2 2
Der=7 ge[{ (D) —($(1)?]. ®)

This quantity was originally introduced in the classical
works [8,32] and characterizes the spreading of an initial
distribution of the phase difference along the potential profiles'g
U(¢). It can be shown that the effective diffusion constant is
proportional to the mean escape ratérom a well of the =
potential U(¢): Dgr=472r [8], i.e., Doy iS inversely pro-
portional to the mean time interval of phase locking. The
dependence of the effective diffusion const#8f versus

noise intensity is shown in Fig. 4. As clearly seen, the in-

-30 | .
crease of the noise level in the stochastic bistable sy&&m

leads to the decrease of effective diffusion consté8)t

which passes through a minimum. That means the growth o0 -40 ‘ ' '

the degree of phase coherence between the output and inp 0.00 001 0'0‘;2 0.03 0.04

signals at an optimal value of noise intensity. As was men-

tioned above, the classical phenomenon of synchronization is FIG. 6. The power spectrum of oscillations in the Lorenz sys-

characterized by the presence of the regions of phase anem.
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_FIG_. 7. Mean frequengye) (solid Iine)' an(_j mean frequency of 0025 - D =0.60 |
switchings (11) (symbolg in a stochastic bistable system versus ’
noise intensity. Dashed line is the value of the mean frequency of
chaotic oscillations in the Lorenz system. Other parametersrare 0.020 |- .
=5, =1, k=0.21, u(t)=y,(t), 7=0.005.
Ni) gois |- i i
period. Moreover, this peak remains alone in a finite region
of noise intensities, which is in good agreement with the
. 0010 .
results reported if29].
0.005 | .
IIl. SYNCHRONIZATION OF SWITCHINGS "
BY THE BROADBAND CHAOTIC SIGNAL novo L2 Mb b
. U0 100 200 300 400 500 600 700 800 900 1000
Now, let us consider the case where the spectrum of the A
input chaotic signal does not contain any sharp peaks. For

tem: dy,; /dt=10(y,—y;)7, dy,/dt=(28y;—Yo—Y1y3)T noise intensity. Other parameters are the same as in Fig. 7.
dys/dt=(y,y,—8/3y3) 7, as the input signalu(t). The o
power spectrum of chaotic oscillationg(t) is pictured in Lorenz-type attractor exists in the phase space and the dy-

Fig. 6. As is well known, for these values of parameters thd@mics of this system can be considered as a random process
of switchings between two statf34,35. For this reason it is

natural to introduce the instantaneous phase of the input sig-

0
10 ' ' ' ' ' ' i nal and of the response through the return times in the secant
planey,=0:
" t—=1y
0 3 d(t)=27———+27K, t,<t<te.,. (10

tes 1tk

The time dependence of the instantaneous phase is a
107 ¢ . piecewise-linear function in this case. The instantaneous fre-
] quencyw(t)=27/T(t) is constant during the time interval
t,<t<ty .., while the mean frequency for this definition is
equivalent to the mean switching frequency of the system:

= 12 2 an
=lim —> ——.
(o Moo MEST terr—

10 L 1 L L 1 1 1 L
02 04 0.6 038 1.0 1.2 14 1.6 1.8

D

The results of our calculations have shown that the instanta-
neous phase difference demonstrates exactly the same behav-
FIG. 8. The dependence of the effective diffusion conskagt  ior as in the previous cases, e.g., the noise-enhanced phase
vs noise intensity in the case of an input signal from the LorenZocking takes place agaimot shown. It should be noted that
system. Other parameters are the same as in Fig. 7. using two different definitions of the instantaneous phases
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(5) and (10) gives the same results for averaged quantities. IV. CONCLUSION

As is seen from Fig. 7, the mean frequency of stochastic

oscillations coincides with the mean frequency of chaotic We have studied the dynamics of a stochastic bistable
oscillations in some range of noise intensity, which meansystem driven by a chaotic input signal. The effect of syn-
the locking of mean frequency of chaotic oscillatiohs  chronization of a switching process in a noisy bistable sys-
other words, the switchings in the Lorenz system synchrotem by the input chaotic signal is found. We have introduced
nize the switchings in the stochastic bistable system at aghe instantaneous phases of an input chaotic signal and of the
optimal value of noise intensity. To confirm these results W& egponse and described this effect in terms of the classical
have calculated the effective diffusion constant. Its depengeqry of oscillations. The instantaneous phase difference

dence versus nflse_lntetns_ny ITfShOV\tIE"QRt';g. 8.t AS 'trr‘] th&jemonstrates behavior that is similar to that of a synchro-
previous case ot an input sighai from the rsystem, € i-ed self-sustained oscillator. However, in contrast to the

increase of noise intensity leads to the growth of phase co- . . - :
herence between the switchings in a stochastic bistable Sygl_assmal case, noise plays a positive role enhancing the phase

tem and chaotic oscillations. It manifests in the decrease o ohterenc$ bftw.eet";];gek'.“p“t (f:h.ao:'C t3|gnal andr:he respoc;]se
D¢t in some range of the noise intensity. This fact meand"at manitests in cxing of Instantaneous pnases an

that the growth of noise intensity causes the increase of ggnean frquencieef stochastic .and chaotic oscillations at an
ration of the time intervals in the course of which the switch-OPtimal noise level. The mentioned effect of phase synchro-

ings in systerm(2) remain synchronized with the switchings Nization of a stochastic switching process is shown to occur

in the Lorenz system. in a finite region of noise intensity. The effective diffusion
Since the dynamics of the Lorenz system can be considconstant takes its minimal value inside of this region, which

ered as the random process of switchings between two metglemonstrates once more the increase of phase coherence be-

stable states, then it is natural to use the residence time diveen the output and input signals. The above results can be

tributions [17] of input and output signals to analyze the considered as a generalization of the approach proposed in

temporal structure of the response for different values of th¢29] to the case of ASR, which, as well as SR, manifests

noise intensity. The results of our calculations of residenceitself as a noise-enhanced phase locking phenomenon.

time distributions are reported in Fig. 9. It is important to

note that the residence-time distribution of the chaotic input

signal has a clearly distinguishable structwleshed line in

Fig. 9 that is caused by the multifractality of the Lorenz ACKNOWLEDGMENTS

system[36]. The increase of the noise intensity makes this

structure more “visible” at the output of the stochastic reso- We are very grateful to Dr. Alexander Neiman for fruitful
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