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Noise-enhanced phase locking in a stochastic bistable system driven by a chaotic signal
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We study the dynamics of an overdamped bistable system driven simultaneously by noise and a chaotic
input signal. The effect of synchronization of switchings in a stochastic bistable system by a subthreshold
chaotic signal is found and described in terms of the theory of phase synchronization. Using the two different
definitions of the instantaneous phase of stochastic and chaotic oscillations, we show explicitly the effect of
noise-enhanced phase locking both for coherent and for broadband chaotic input signals. The quantitative
analysis of this effect has shown that the degree of phase coherence estimated by means of the effective
diffusion constant is maximal in some range of noise intensities. Moreover, there is a synchronization region
on the parameter plane ‘‘amplitude of chaotic signal–noise intensity’’ in which the phases and mean frequen-
cies of an input signal and of response are locked.@S1063-651X~99!09301-0#

PACS number~s!: 05.45.2a, 05.40.2a
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I. INTRODUCTION

Synchronization is a basic phenomenon in physics and
classical example of self-organization in nonlinear osci
tory systems. To synchronize means to concur or agre
time, to proceed or to operate at exactly the same rate
happen at the same time@1#. The phenomenon of synchron
zation occurs in nonlinear self-sustained oscillators driven
external periodic force or coupled with each other@2,3#. In
general, synchronization can be treated as the appearan
some functionals characterizing the correlations in temp
behavior of two or more processes@4#. The instantaneous
phase plays the role of such a functional in the class
theory of oscillations. Synchronization is defined in this ca
as the locking of phases of the self-sustained oscillatorF(t)
and of external periodic forceC(t)5V0t: unF(t)
2mC(t)u,const, or by a weaker condition of frequenc

locking V5Ḟ5 (m/n) V0 ; here n,m are some integers
The above conditions are fulfilled in finite regions of th
parameter space of the system which are called Arn
tongues. Recently, the classical approach to synchroniza
based on the notion of an instantaneous phase of oscilla
was generalized in the cases of nonautonomous and inte
ing chaotic systems@5,6#.

Synchronization of self-sustained oscillators in the pr
ence of noise was considered for the first time in@7# and was
then studied in detail by Stratonovich@8#. As was shown,
Gaussian noise leads to fluctuations of the phase differe
f(t)5F(t)2C(t) and, in the assumption of constant am
plitude, its slow dynamics can be described by the follow
stochastic differential equation~SDE!:

ḟ5D2eG~f!1j~ t !, ~1!

whereD5V2V0 ande are the frequency mismatch and th
parameter of nonlinearity, respectively,G(f) is a 2p peri-
odic function, andj(t) is Gaussian noise@8#. In the case of a
Van der Pol oscillator driven by an external periodic forc
G(f)[sinf and the phase difference performs overdamp
Brownian motion in the tilted periodic potentialU(f)5
PRE 591063-651X/99/59~2!/1593~7!/$15.00
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2Df2e cosf. In the case ofD,e and of small noise inten-
sity, this motion can be divided into two parts: the pha
difference fluctuates for a long time inside a well of th
potentialU(f) ~the phase locking! and rarely makes jumps
from one potential well to another~i.e., displays phase slips!.

As is well known, the effect of noise on the synchroniz
self-sustained oscillator is negative: the increase of noise
tensity leads to the loss of phase coherence~phase slips be-
come more frequent! and shrinks Arnold tongues@9#. How-
ever, there are qualitatively different situations when t
noise plays a constructive role@10#. One of the typical ex-
amples of the positive effect of noise is stochastic resona
~SR! @11–14#, which occurs in a wide class of nonlinea
systems driven simultaneously by noise and a signal.
demonstrate SR, a nonlinear system should possess a n
controlled time scale. Traditionally, SR is described in ter
of the spectral power amplification@15# and signal-to-noise
ratio @16#. The dependencies of these characteristics ve
noise intensity have a bell-shaped maximum that allows u
determine SR as amplification of a weak signal applied to
input of the system by tuning the noise level.

Another approach to the description of SR is based on
statistics of residence times@17,18#. The residence times dis
tribution has an exponential shape in the absence of an i
signal. In the presence of a weak signal this distribution
structurized and contains a series of peaks centered at
multiples of the half-period of the signal@12#. As was shown
in recent work@19#, to get the correct results it is necessa
to analyze the difference between the residence-time di
bution in the presence of modulation and the residence-t
distribution in the absence of modulation. The deviati
from undriven residence-time distribution at the time of t
half-period of the external signal can be used as the mea
for SR.

It is important to underline that, usually, an amplitude
periodic force takes much less than a barrier separating
potential wells and SR can be correctly described by line
response theory@20–22#. In this case the response of th
stochastic resonator is fully determined by the linear susc
tibility of the system and the structure of the input signal
1593 ©1999 The American Physical Society
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immaterial: the signal can be harmonic, quasiperiodic@23#,
or even aperiodic broadband noisy@22,24#. As was shown in
@25#, noise can enhance the response of a nonlinear syste
a weak input signal, regardless of whether the signal is p
odic or aperiodic. The cross-correlation functions a
transinformation that directly quantifies the rate of inform
tion transfer through a stochastic system were used to q
titatively characterize this phenomenon, which was cal
aperiodic stochastic resonance~ASR!. ASR in excitable sys-
tems driven by a chaotic input signal was considered in@26#.
It was shown that the information transfer between the t
relaxation-type nonlinear oscillators is optimized by interm
diate noise levels.

It is well known that in some cases the degree of coh
ence between switchings in a stochastic bistable system
an external signal may be sufficiently large@11#. It allows us
to speak about synchronization features of SR, which
came the subject of a lot of theoretical and experimen
investigations@12,22#. These features manifest themselv
more brightly in situations when the amplitude of the pe
odic force is large enough, although it is insufficient to cau
the switchings in the absence of noise. As was shown in@27#,
the effect of mean switching frequency locking in a Schm
trigger driven simultaneously by noise and periodic sig
takes place. Moreover, as follows from the results of@28#,
synchronization of the switching processes can also be
served in the case of the absence of deterministic time sc
when the interaction of statistical time scales of subsyste
takes place. As follows from these results that SR syste
can demonstrate synchronizationlike phenomena which
similar to the classical synchronization mentioned above

The classical notion of synchronization and mention
synchronizationlike effects occurring in periodically drive
stochastic bistable systems@27# were discussed in@29#. It has
been shown that for a sufficiently large amplitude of perio
force the noise-enhanced phase locking takes place and
in this case, can be correctly described in terms of the c
sical theory of oscillations. However, in@29# the case of a
periodic input signal was considered only, whereas the r
world signals are often not periodic and contain both ph
and amplitude fluctuations.

The main goal of the present study is to take the next s
in the study of synchronization in stochastic bistable syste
and to generalize the approach proposed in@29# to the more
complex and interesting case of chaotic input signals. S
signals can be considered as a simple model of real sign
which in spite of their deterministic nature, contain both a
plitude and phase fluctuations. The previous study of
passing of nonperiodic signals through the stochastic bist
system dealt with a consideration of the influence of the a
plitude and phase fluctuations on the SR characteristics~am-
plification and signal-to-noise ratio! @30,31#. However, these
results do not provide any information about instantane
matching of input signals and of output switching events.
other words, we want to find the answers to the followi
questions: Is it possible to observe synchronization betw
a chaotic input signal and a response in the classical sen
the coincidence of their instantaneous phases? If yes,
how long will they remain synchronized? To answer the
questions, we introduce in Sec. II the instantaneous phas
stochastic and chaotic oscillations based on the analytic
to
ri-
d
-
n-
d

o
-

r-
nd

e-
l

s
-
e

t
l

b-
les
s
s

re

d

c
R,

s-

l-
e

p
s

h
ls,
-
e
le
-

s
n

n
of

en
e
of
g-

nal concept and demonstrate the noise-enhanced phase
ing for the input signal from the Ro¨ssler system. Section II
is devoted to the study of synchronization of a switchi
process in a stochastic bistable system by the broadband
otic signal from the Lorenz system. Our conclusions a
given in Sec. IV.

II. NOISE-ENHANCED INSTANTANEOUS
PHASE LOCKING

We treat as a model an overdamped stochastic bist
system driven by the slowly varying chaotic signal, which
described by the following SDE:

ẋ5ax2bx31A2Dj~ t !1km~ t !, ~2!

where j(t) is white Gaussian noise,a,b.0, k is a some
constant, andm(t) is the signal from a chaotic system.

First, let us consider the case of the chaotic input sig
from the Rössler system, which is described by the followin
ordinary differential equations:ẋ152t(x21x3), ẋ25t(x1

10.15x2), ẋ35t@0.21x3(x12c)#, where t50.01 is the
small parameter which was introduced in the model to
duce the characteristic time scale andc.6.1. It is known
that the Ro¨ssler system for chosen values of the parame
demonstrates the regime of so-called weak chaos whic
characterized by the presence of a sharp single peak in
power spectrum of oscillations~see Fig. 1!. That gives the
possibility to consider the oscillations in the Ro¨ssler system
as close to periodic with slowly varying amplitude and pha
~we can introduce into consideration the quasiperiod of c
otic oscillationsT which equals to the mean return time
the secant planex150). This fact and also the presence
the direction in the phase space of a chaotic system wh
corresponds to the zero Lyapunov exponent give the po
bility to introduce the phase of chaotic oscillations and
describe the external and mutual chaotic synchronization
terms of the classical theory of phase synchronization@6#.
According to@5,6#, the instantaneous phase of chaotic osc
lations can be introduced in three ways: through the ret
times in some secant plane, through a phase space projec

FIG. 1. The power spectrum of oscillations in the Ro¨ssler sys-
tem for c57.1. The largest Lyapunov exponent isl50.066 58.
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and through the analytic signal concept. According to
approach proposed in@29#, we will define the instantaneou
phases of both the input signal from the Ro¨ssler system and
the response of the stochastic bistable system by mean
the analytic signal concept, based on the Hilbert transfor
tion ~HT!. The analytic signalw(t) is a complex function of
time defined as

w~ t !5x~ t !1 iy~ t !5A~ t !eiF~ t !, ~3!

wherey(t) is the HT of original processx(t):

y~ t !5
1

pE2`

` x~t!

t2t
dt. ~4!

In the last expression the integral is taken in the sense o
Cauchy principal value. Instantaneous amplitudea(t) and
phaseF(t) of x(t) are unambiguously defined through th
concept as

F~ t !5arctanFy~ t !

x~ t !G , a2~ t !5x2~ t !1y2~ t !. ~5!

The mean frequencŷv& is then defined as

^v&5 lim
T→`

1

TE0

T

v~ t !dt. ~6!

As was mentioned above, noise shrinks Arnold tongue
the self-sustained oscillator and makes obscure the clas
definition of synchronization. Evidently, in this case we c
speak abouteffective synchronizationonly @32#. To define
the conditions of effective synchronization of a noisy d
namical system we must impose some restrictions eithe
phase~frequency! fluctuations or on the output signal-to
noise ratio. We will consider the strongest definition bas
on statistics of phase fluctuations.

The instantaneous phase difference between the ou
and input signals is

f~ t !5F~ t !2C~ t !, ~7!

whereF(t) is the phase of the stochastic bistable system
C(t) is the phase of the chaotic signalx1(t) from the
Rössler system. To determinef(t), we have integrated nu
merically the original SDE~2! and then we perform HT us
ing a well-established technique~see, for example,@33#!. The
results of our calculations are reported in Fig. 2. The eff
of noise-enhanced phase lockingis clearly seen. The instan
taneous phases of the output and input signals are locke
an optimal noise level in the stochastic resonator and t
difference fluctuates about some constant value. As the n
intensity deviates from an optimal value, the duration of
time intervals in the course of which the phases are loc
decreases and phase slips appear, so that we can speak
partially synchronized phase dynamics. It is remarkable
the dynamics of the phase differencef(t) as well as in the
case of periodic driving@29# is very similar to that of a
synchronized self-sustained oscillator and can be qua
tively described by SDE~1!. The dependence of mean fre
quency ~6! and mean switching frequency@27,29# versus
noise intensity is presented in Fig. 3. As clearly seen, ther
e

of
a-

he

of
cal

n

d

ut

d

t

at
ir

ise
e
d
bout
at

a-

is

the range of noise intensities in which the mean frequenc
stochastic oscillations coincides with the mean frequency
chaotic oscillations, e.g., thelocking of mean frequency o
chaotic oscillationstakes place. The results reported in Fig
2 and 3 are very similar to those obtained in@29#, where the
case of periodic forcing was considered. This fact means
the phase fluctuations contained in the input signal
passed through the stochastic resonator without any dis
tions at an optimal noise level. Although the above resu
clearly display the effect of phase synchronization, we ne
to estimate the duration of phase locking times to determ
the effective synchronization of a stochastic system.

According to the definition of effective synchronization,
stochastic bistable system driven by the chaotic signal ca

FIG. 2. The instantaneous phase difference versus time~in units
of quasiperiod of the chaotic signal! for indicated values of noise
intensity D. Other parameters area55, b51, c57.1, k50.35,
m(t)5x1(t)21.025 18.

FIG. 3. The dependence of mean frequency~6! ~solid line! and
of mean switching frequency~symbols! versus noise intensity for
different values of parametersc and k: ~1! k50; ~2! c57.1, k
50.35; ~3! c58.5, k50.30. Dashed line is the value of the mea
frequency of chaotic oscillations in the Ro¨ssler system. Other pa
rameters are the same as in the previous figure.
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considered as effectively synchronized if the mean time
the course of which the instantaneous phase of the syste
locked is much larger than the characteristic time scale
chaotic system. There is no universal and strict definition
a time scale of a chaotic dynamical system at present
definition is a separate task in each concrete case. Fo
input signal from the Ro¨ssler system demonstrating the r
gime of weak chaos, it is reasonable to consider the qu
period of chaotic oscillations as such a time scale. In
study we will consider the chaotically driven overdamp
Kramers oscillator~2! to be effectively synchronized if its
phase appears to be locked in the course of a time tha
much larger than the quasiperiod of oscillations in t
Rössler system. As seen from Fig. 2, the phase of stocha
oscillations is locked in the course of the hundreds of qu
periods of chaotic signal, which means synchronization
the above defined sense. To estimate a duration of p
locking time intervals we will use theeffective diffusion con-
stant,which is defined by the following relation:

Deff5
1

2

d

dt
@^f2~ t !&2^f~ t !&2#. ~8!

This quantity was originally introduced in the classic
works @8,32# and characterizes the spreading of an init
distribution of the phase difference along the potential pro
U(f). It can be shown that the effective diffusion constan
proportional to the mean escape rater from a well of the
potentialU(f): Deff54p2r @8#, i.e., Deff is inversely pro-
portional to the mean time interval of phase locking. T
dependence of the effective diffusion constant~8! versus
noise intensity is shown in Fig. 4. As clearly seen, the
crease of the noise level in the stochastic bistable system~2!
leads to the decrease of effective diffusion constant~8!
which passes through a minimum. That means the growt
the degree of phase coherence between the output and
signals at an optimal value of noise intensity. As was m
tioned above, the classical phenomenon of synchronizatio
characterized by the presence of the regions of phase

FIG. 4. The effective diffusion constantDeff vs noise intensity
for indicated values of parameterc in the Rössler system. Othe
parameters are the same as in Fig. 2.
n
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frequency locking~Arnold tongues!. To construct such a re
gion in our case we define the condition of effective synch
nization as

Deff<
4p2

Tn
, ~9!

wheren@1 is the number of quasiperiodsT of chaotic os-
cillations. In our study we tookn5100, e.g., the system~2!
can be considered as effectively synchronized if the inst
taneous phases are locked in the course of at least 100
siperiods of the input signal. The region of phase locking
shown in Fig. 5. It possesses a tonguelike shape that m
the analogy with the classical synchronization more obvio
The threshold character of synchronization is also clea
seen. The calculation of the residence-time distribution@17#
has shown that in the regime of synchronization it contain
single peak at the time that corresponds to half of the qu

FIG. 6. The power spectrum of oscillations in the Lorenz s
tem.

FIG. 5. Synchronization region on the parameter plane ‘‘no
intensity-amplitude of chaotic signal.’’ Other parameters area
55, b51, c56.26, m(t)5x1(t).
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period. Moreover, this peak remains alone in a finite reg
of noise intensities, which is in good agreement with t
results reported in@29#.

III. SYNCHRONIZATION OF SWITCHINGS
BY THE BROADBAND CHAOTIC SIGNAL

Now, let us consider the case where the spectrum of
input chaotic signal does not contain any sharp peaks.
this purpose we take they1 variable of the Lorenz sys
tem: dy1 /dt510(y22y1)t, dy2 /dt5(28y12y22y1y3)t,
dy3 /dt5(y1y228/3y3)t, as the input signalm(t). The
power spectrum of chaotic oscillationsy1(t) is pictured in
Fig. 6. As is well known, for these values of parameters

FIG. 7. Mean frequency~6! ~solid line! and mean frequency o
switchings ~11! ~symbols! in a stochastic bistable system vers
noise intensity. Dashed line is the value of the mean frequenc
chaotic oscillations in the Lorenz system. Other parameters aa
55, b51, k50.21, m(t)5y1(t), t50.005.

FIG. 8. The dependence of the effective diffusion constantDeff

vs noise intensity in the case of an input signal from the Lore
system. Other parameters are the same as in Fig. 7.
n
e

e
or

e

Lorenz-type attractor exists in the phase space and the
namics of this system can be considered as a random pro
of switchings between two states@34,35#. For this reason it is
natural to introduce the instantaneous phase of the input
nal and of the response through the return times in the se
planey150:

F~ t !52p
t2tk

tk112tk
12pk, tk,t,tk11 . ~10!

The time dependence of the instantaneous phase
piecewise-linear function in this case. The instantaneous
quencyv(t)52p/T(t) is constant during the time interva
tk,t,tk11 , while the mean frequency for this definition
equivalent to the mean switching frequency of the system

^v&5 lim
M→`

1

M (
k51

M
2p

tk112tk
. ~11!

The results of our calculations have shown that the insta
neous phase difference demonstrates exactly the same b
ior as in the previous cases, e.g., the noise-enhanced p
locking takes place again~not shown!. It should be noted tha
using two different definitions of the instantaneous pha

of

z

FIG. 9. Residence-time distributions for indicated values
noise intensity. Other parameters are the same as in Fig. 7.
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~5! and ~10! gives the same results for averaged quantit
As is seen from Fig. 7, the mean frequency of stocha
oscillations coincides with the mean frequency of chao
oscillations in some range of noise intensity, which mea
the locking of mean frequency of chaotic oscillations. In
other words, the switchings in the Lorenz system synch
nize the switchings in the stochastic bistable system a
optimal value of noise intensity. To confirm these results
have calculated the effective diffusion constant. Its dep
dence versus noise intensity is shown in Fig. 8. As in
previous case of an input signal from the Ro¨ssler system, the
increase of noise intensity leads to the growth of phase
herence between the switchings in a stochastic bistable
tem and chaotic oscillations. It manifests in the decreas
Deff in some range of the noise intensity. This fact mea
that the growth of noise intensity causes the increase of
ration of the time intervals in the course of which the switc
ings in system~2! remain synchronized with the switching
in the Lorenz system.

Since the dynamics of the Lorenz system can be con
ered as the random process of switchings between two m
stable states, then it is natural to use the residence time
tributions @17# of input and output signals to analyze th
temporal structure of the response for different values of
noise intensity. The results of our calculations of residen
time distributions are reported in Fig. 9. It is important
note that the residence-time distribution of the chaotic in
signal has a clearly distinguishable structure~dashed line in
Fig. 9! that is caused by the multifractality of the Loren
system@36#. The increase of the noise intensity makes t
structure more ‘‘visible’’ at the output of the stochastic res
nator ~solid line in Fig. 9!. At an optimal noise level the
structures of the input and output signals nearly coinci
Thus, the above results clearly show that stochastic bist
system can be effectively synchronized by the broadb
chaotic signal.
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IV. CONCLUSION

We have studied the dynamics of a stochastic bista
system driven by a chaotic input signal. The effect of sy
chronization of a switching process in a noisy bistable s
tem by the input chaotic signal is found. We have introduc
the instantaneous phases of an input chaotic signal and o
response and described this effect in terms of the class
theory of oscillations. The instantaneous phase differe
demonstrates behavior that is similar to that of a synch
nized self-sustained oscillator. However, in contrast to
classical case, noise plays a positive role enhancing the p
coherence between the input chaotic signal and the resp
that manifests in thelocking of instantaneous phases an
mean frequenciesof stochastic and chaotic oscillations at a
optimal noise level. The mentioned effect of phase synch
nization of a stochastic switching process is shown to oc
in a finite region of noise intensity. The effective diffusio
constant takes its minimal value inside of this region, wh
demonstrates once more the increase of phase coherenc
tween the output and input signals. The above results ca
considered as a generalization of the approach propose
@29# to the case of ASR, which, as well as SR, manife
itself as a noise-enhanced phase locking phenomenon.
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